Waveform Catalog
News / Images & Movies Links 
Literature Catalog: Compact Binaries: Inspiral: NonSpinning BH BinaryAlso sorted by authorLast updated Feb 10, 2004.
2003L. Blanchet, T. Damour and G. EspositoFarese, Dimensional regularization of the third postnewtonian dynamics of point particles in harmonic coordinates, 2003.T. Mora and C. M. Will, A postnewtonian diagnostic of quasiequilibrium binary configurations of compact objects, 2003. B. Iyer and L. Blanchet, " Third PostNewtonian dynamics of compact binaries: equations in the centerofmass frame," to appear in Classical and Quantum Gravity
2002L. Blanchet, B.R. Iyer and B. Joguet, `` Gravitational waves from inspiralling compact binaries: Energy flux to third postNewtonian order,'' Phys. Rev. D 65, 064005 (2002)L. Blanchet, G. Faye, B.R. Iyer and B. Joguet, `` Gravitationalwave inspiral of compact binary systems to 7/2 postNewtonian order,'' Phys. Rev. D 65, 061501 (2002) L. Blanchet, `` Innermost circular orbit of binary black holes at the third postNewtonian approximation,'' Phys. Rev. D 65, 124009 (2002) A. Gopakumar, B.R. Iyer and S. Iyer, `` Second postNewtonian gravitational wave polarizations for compact binaries in elliptical orbits," Phys. Rev. D 65, 084011 (2002) M.E. Pati, C.M. Will, `` PostNewtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. 2. Two body equations of motion to second postNewtonian order, and radiation reaction to 3.5 postNewtonian order," Phys. Rev. D 65, 104008 (2002)
2001L.Blanchet and G. Faye, `` Lorentzian regularization and the problem of pointlike particles in general relativity,'' J. Math. Phys. 42, 4391 (2001)L. Blanchet and G. Faye, `` General relativistic dynamics of compact binaries at the third postNewtonian order,'' Phys. Rev. D 63, 062005 (2001) T. Damour, P. Jaranowski and G. Schaefer, `` Equivalence between the ADMHamiltonian and the harmoniccoordinates approaches to the third postNewtonian dynamics of compact binaries,'' Phys. Rev. D 63, 044021 (2001) [Erratumibid. D 66, 029901 (2002)]. T. Damour, P. Jaranowski and G. Schaefer, `` Dimensional regularization of the gravitational interaction of point masses,'' Phys. Lett. B 513, 147 (2001) V.C. de Andrade, L. Blanchet and G. Faye, `` Third postNewtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic coordinate and ADMHamiltonian formalisms,'' Class. Quant. Grav. 18, 753 (2001)
2000L. Blanchet and G. Faye, `` Equations of motion of pointparticle binaries at the third postNewtonian order,'' Phys. Lett. A 271, 58 (2000)T. Damour, P. Jaranowski and G. Schaefer, `` Dynamical invariants for general relativistic twobody systems at the third postNewtonian approximation,'' Phys. Rev. D 62, 044024 (2000) M.E. Pati and C.M. Will, `` PostNewtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. 1. Foundations," Phys. Rev. D 62, 124015 (2000)
1999P. Jaranowski and G. Schaefer, `` The binary blackhole problem at the third postNewtonian approximation in the orbital motion: Static part,'' Phys. Rev. D 60, 124003 (1999)
1998L. Blanchet, `` Gravitationalwave tails of tails,'' Class. Quant. Grav. 15, 113 (1998)P. Jaranowski and G. Schaefer, `` Nonuniqueness of the third postNewtonian binary point mass dynamics," Phys. Rev. D 57, 5948 (1998) P. Jaranowski and G. Schaefer, `` 3rd postNewtonian higher order Hamilton dynamics for twobody pointmass systems,'' Phys. Rev. D 57, 7274 (1998) [Erratumibid. D 63, 029902 (2001)].
1997A. Gopakumar, B.R. Iyer and S. Iyer, `` Second postNewtonian gravitational radiation reaction for twobody systems: Nonspinning bodies,'' Phys. Rev. D 55, 6030 (1997) [Erratumibid. D 57, 6562 (1998)].A. Gopakumar and B.R. Iyer, `` Gravitational waves from inspiraling compact binaries: angular momentum flux, evolution of the orbital elements, and the waveform to the second postNewtonian order," Phys. Rev. D 56, 7708 (1997)
1996L. Blanchet, B.R. Iyer, C.M. Will and A.G. Wiseman, `` Gravitational wave forms from inspiralling compact binaries to secondpostNewtonian order,'' Class. Quant. Grav. 13, 575 (1996)L. Blanchet, `` Energy losses by gravitational radiation in inspiralling compact binaries to five halves postNewtonian order,'' Phys. Rev. D 54, 1417 (1996) C.M. Will and A.G. Wiseman, `` Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second postNewtonian order,'' Phys. Rev. D 54, 4813 (1996) 1995L. Blanchet, T. Damour, B.R. Iyer, C.M. Will and A.G. Wiseman, `` Gravitational radiation damping of compact binary systems to second postNewtonian order,'' Phys. Rev. Lett. 74, 3515 (1995)L. Blanchet, T. Damour and B.R. Iyer, `` Gravitational waves from inspiralling compact binaries: Energy loss and waveform to secondpostNewtonian order," Phys. Rev. D 51, 5360 (1995) L. Blanchet, `` SecondpostNewtonian generation of gravitational radiation," Phys. Rev. D 51, 2559 (1995) B.R. Iyer and C.M. Will, ``PostNewtonian Gravitational Radiation Reaction For Two Body Systems: Nonspinning Bodies,'' Phys. Rev. D 52, 6882 (1995).
1993B.R. Iyer and C.M. Will, ``PostNewtonian Gravitational Radiation Reaction For Two Body Systems,'' Phys. Rev. Lett. 70, 113 (1993).L.E. Kidder, C.M. Will and A.G. Wiseman, ``Coalescing binary systems of compact objects to (post) 2.5Newtonian order. III. Transition from inspiral to plunge," Phys. Rev. D 47, 3281 (1993)
1992L.E. Kidder, C.M. Will and A.G. Wiseman, ``Innermost stable orbits for coalescing binary systems of compact objects," Class. Quantum Grav. 9, L127 (1992).
1990C.W. Lincoln and C.M. Will, ``Coalescing Binary Systems Of Compact Objects To (Post) 5/2 Newtonian Order: Late Time Evolution And Gravitational Radiation Emission,'' Phys. Rev. D 42, 1123 (1990)
1980sL. Blanchet and G. Schaefer, "Higher order gravitational radiation losses in binary ststems," Mon. Not. R. astr. Soc. 239, 845 (1989).T. Damour and N. Deruelle, ``General relativistic celestial mechanics of binary systems I. The postNewtonian motion," Ann. Inst. Henri Poincaré 43, 107 (1985) T. Damour, ``Gravitational radiation reaction in the binary pulsar and the quadrupoleformula controversy," Phys. Rev. Lett. 51, 1019 (1983). T. Damour, ``The twobody problem and radiation damping in generalrelativity,'' Comptes Rendus Acad. Sci. Ser. II 294, 1355 (1982). L. Bel, T. Damour, N. Deruelle, J. Ibañez, and J. Martin, ``Poincaréinvariant gravitationalfield and equations of motion of 2 pointlike objects  The postlinear approximtion of generalrelativity,'' Gen. Relativ. Gravit. 13, 963 (1981). T. Damour and N. Deruelle, ``Generalized lagrangian of two point masses in the postpostNewtonian approximation of generalrelativity,'' Comptes Rendus Acad. Sci. Ser. II 293, 537 (1981). T. Damour and N. Deruelle, ``Radiation Reaction And Angular Momentum Loss In Small Angle Gravitational Scattering,'' Phys. Lett. A 87, 81 (1981). K.S. Thorne, ``Multipole expansion of gravitational radiation," Rev. Mod. Phys. 52, 285 (1980).
1900  1979R.V. Wagoner and C.M. Will, ``Postnewtonian Gravitational Radiation From Orbiting Point Masses,'' Astrophys. J. 210, 764 (1976) [Erratumibid. 215, 984 (1977)].P.C. Peters, ``Gravitational radiation and the motion of two point masses," Phys. Rev. 136, 1224 (1964). P.C. Peters and J. Mathews, ``Gravitational radiation from point masses in a Keplerian orbit," Phys. Rev. 131, 435 (1963). L. Landau and E. Lifshitz, ``The classical theory of fields,'' Chap. 11, (AddisonWesley, Reading Massachusetts, 1959). A. Einstein, Sb. Preuss. Akad. Wiss. 688 (1916) A. Einstein, Sb. Preuss. Akad. Wiss. 154 (1918)
