Waveform Catalog
News / Images & Movies Links |
## Literature Catalog: Numerical Relativity Formulations & AnalysisAlso sorted by dateLast updated March 21, 2003. A. Abrahams and C. Evans, " Gauge Invariant Treatment of Gravitational Radiation Near the Source: Analysis and Numerical Simulations", Phys. Rev. D 42, (1990) pp.2585-2594. M. Alcubierre, B. Brugmann, P. Diener, M. Kippitz, D. Pollney, E. Seidel, R. Takahashi, " Gauge conditions for long-term numerical black hole evolutions without excision", gr-qc/0206072. M. Alcubierre, B. Brugmann, T. Dramlitsch, J. Font, P. Papadopoulos, E. Seidel, N. Stergioulas, and R. Takahashi, " Towards a stable numerical evolution of strongly gravitating systems in general relativity: The conformal treatments", Phys. Rev. D 62, 044034 (2000). M. Alcubierre, B. Brugmann, M. Miller, W. Suen, " Conformal hyperbolic formulation of the Einstein equations", Phys. Rev. D 60, 064017 (1999). T. Baumgarte, S. Shapiro, " Numerical integration of Einstein's field equations", Phys. Rev. D 59, 024007 (1999). P. Brady, J. Creighton, K. Thorne, " Computing the merger of black-hole binaries: The IBBH problem", Phys. Rev. D 58, 061501 (1998). G. Calabrese, J. Pullin, O. Sarbach, M. Tiglio, " Stability properties of a formulation of Einstein's equations", Phys. Rev. D 66, 064011 (2002). G. Calabrese, J. Pullin, O. Sarbach, M. Tiglio, " Convergence and stability in numerical relativity", Phys. Rev. D 66 041501(R) (2002). G. Calabrese, L. Lehner, M. Tiglio, " Constraint-preserving boundary conditions in numerical relativity", Phys. Rev. D 65, 104031 (2002). M. Choptuik, " Consistency of finite-difference solutions of Einstein's equations", Phys. Rev. D 44, 3124-3135 (1991). G. Cook, " Initial Data for Numerical Relativity", Living Reviews. S. Frittelli, " Note on the propagation of the constraints in standard 3+1 general relativity", Phys. Rev. D 55, 5992-5996 (1997). L. Kidder, M. Scheel, S. Teukolsky, " Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations", Phys. Rev. D 64, 064017 (2001). M. Miller, " On the Numerical Stability of the Einstein Equations", gr-qc/0008017. O. Sarbach, M. Tiglio, " Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations", Phys. Rev. D 66, 064023 (2002). O. Sarbach, G. Calabrese, J. Pullin, M. Tiglio, " Hyperbolicity of the BSSN system of Einstein evolution equations", Phys. Rev. D 66, 064002 (2002). M. Scheel, L. Kidder, L. Lindblom, H. Pfeiffer, S. Teukolsky " Towards stable 3D numerical evolutions of black-hole spacetimes", Phys. Rev. D 66, 124005 (2002). M. Shibata, T. Nakamura, " Evolution of three-dimensional gravitational waves: Harmonic slicing case", Phys. Rev. D 52, 5428-5444 (1995). F. Siebel, P. Hubner, " Effect of constraint enforcement on the quality of numerical solutions in general relativity", Phys. Rev. D 64, 024021 (2001). S. Teukolsky, " Stability of the iterated Crank-Nicholson method in numerical relativity", Phys. Rev. D 61, 087501 (2000). H. Yo, T. Baumgarte, S. Shapiro " Improved numerical stability of stationary black hole evolution calculations", Phys. Rev. D 66, 084026 (2002). |